Generalized Maxwell model

The Generalized Maxwell model also known as the Maxwell–Wiechert model (after James Clerk Maxwell and E Wiechert [1] [2]) is the most general form of the linear model for viscoelasticity. It takes into account that the relaxation does not occur at a single time, but at a distribution of times. Due to molecular segments of different lengths with shorter ones contributing less than longer ones, there is a varying time distribution. The Wiechert model shows this by having as many spring–dashpot Maxwell elements as are necessary to accurately represent the distribution. The figure on the right shows the generalised Wiechert model [3] [4] .

References

  1. ^ Wiechert, E (1889); "Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany
  2. ^ Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, 286, 335–348, 546–570
  3. ^ Roylance, David (2001); "Engineering Viscoelasticity", 14-15
  4. ^ Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126